1,163 research outputs found

    Study of multiple hologram recording in lithium niobate

    Get PDF
    The results of detailed experimental and theoretical considerations relating to multiple hologram recording in lithium niobate are reported. The following problem areas are identified and discussed: (1) the angular selectivity of the stored holograms, (2) interference effects due to the crystal surfaces, (3) beam divergence effects, (4) material recording sensitivity, and (5) scattered light from material inhomogeneities

    Study of multiple hologram recording in lithium niobate

    Get PDF
    The results of a number of theoretical and experimental studies relating to multiple hologram recording in lithium niobate are reported. The analysis of holographic gratings stored in lithium niobate has been extended to cover a more realistic range of physical situations. A new successful dynamic (feedback) theory for describing recording, nondestructive reading, erasure, enhancement, and angular sensitivity has been developed. In addition, the possible architectures of mass data storage systems have been studied

    A laser scanner for 35mm film

    Get PDF
    The design, construction, and testing of a laser scanning system is described. The scanner was designed to deliver a scanned beam over a 2.54 cm by 2.54 cm or a 5.08 cm by 5.08 cm format. In order to achieve a scan resolution and rate comparable to that of standard television, an acousto-optic deflector was used for one axis of the scan, and a light deflecting galvanometer for deflection along the other axis. The acoustic optic deflector has the capability of random access scan controlled by a digital computer

    Thickness dependent Curie temperatures of ferromagnetic Heisenberg films

    Full text link
    We develop a procedure for calculating the magnetic properties of a ferromagnetic Heisenberg film with single-ion anisotropy which is valid for arbitrary spin and film thickness. Applied to sc(100) and fcc(100) films with spin S=7/2 the theory yields the layer dependent magnetizations and Curie temperatures of films of various thicknesses making it possible to investigate magnetic properties of films at the interesting 2D-3D transition.Comment: 9 pages, 2 figures, accepted (Solid State Commun.

    Extending the generalized Chaplygin gas model by using geometrothermodynamics

    Full text link
    We use the formalism of geometrothermodynamics (GTD) to derive fundamental thermodynamic equations that are used to construct general relativistic cosmological models. In particular, we show that the simplest possible fundamental equation, which corresponds in GTD to a system with no internal thermodynamic interaction, describes the different fluids of the standard model of cosmology. In addition, a particular fundamental equation with internal thermodynamic interaction is shown to generate a new cosmological model that correctly describes the dark sector of the Universe and contains as a special case the generalized Chaplygin gas model.Comment: 18 pages, 7 figures. Section added: Basics aspects of geometrothermodynamic

    Specific heat anomalies of open quantum systems

    Get PDF
    The evaluation of the specific heat of an open, damped quantum system is a subtle issue. One possible route is based on the thermodynamic partition function which is the ratio of the partition functions of system plus bath and of the bath alone. For the free damped particle it has been shown, however, that the ensuing specific heat may become negative for appropriately chosen environments. Being an open system this quantity then naturally must be interpreted as the change of the specific heat obtained as the difference between the specific heat of the heat bath coupled to the system degrees of freedom and the specific heat of the bath alone. While this difference may become negative, the involved specific heats themselves are always positive; thus, the known thermodynamic stability criteria are perfectly guaranteed. For a damped quantum harmonic oscillator, instead of negative values, under appropriate conditions one can observe a dip in the difference of specific heats as a function of temperature. Stylized minimal models containing a single oscillator heat bath are employed to elucidate the occurrence of the anomalous temperature dependence of the corresponding specific heat values. Moreover, we comment on the consequences for the interpretation of the density of states based on the thermal partitionfunction.Comment: 7 pages, 6 figures, new title and some modifications of the main tex

    Macroscopic equations for the adiabatic piston

    Get PDF
    A simplified version of a classical problem in thermodynamics -- the adiabatic piston -- is discussed in the framework of kinetic theory. We consider the limit of gases whose relaxation time is extremely fast so that the gases contained on the left and right chambers of the piston are always in equilibrium (that is the molecules are uniformly distributed and their velocities obey the Maxwell-Boltzmann distribution) after any collision with the piston. Then by using kinetic theory we derive the collision statistics from which we obtain a set of ordinary differential equations for the evolution of the macroscopic observables (namely the piston average velocity and position, the velocity variance and the temperatures of the two compartments). The dynamics of these equations is compared with simulations of an ideal gas and a microscopic model of gas settled to verify the assumptions used in the derivation. We show that the equations predict an evolution for the macroscopic variables which catches the basic features of the problem. The results here presented recover those derived, using a different approach, by Gruber, Pache and Lesne in J. Stat. Phys. 108, 669 (2002) and 112, 1177 (2003).Comment: 13 pages, 7 figures (revTeX4) The paper has been completely rewritten with new derivation and results, supplementary information can be found at http://denali.phys.uniroma1.it/~cencini/Papers/cppv07_supplements.pd

    Maximal work extraction from quantum systems

    Get PDF
    Thermodynamics teaches that if a system initially off-equilibrium is coupled to work sources, the maximum work that it may yield is governed by its energy and entropy. For finite systems this bound is usually not reachable. The maximum extractable work compatible with quantum mechanics (``ergotropy'') is derived and expressed in terms of the density matrix and the Hamiltonian. It is related to the property of majorization: more major states can provide more work. Scenarios of work extraction that contrast the thermodynamic intuition are discussed, e.g. a state with larger entropy than another may produce more work, while correlations may increase or reduce the ergotropy.Comment: 5 pages, 0 figures, revtex

    Geometrothermodynamics

    Get PDF
    We present the fundamentals of geometrothermodynamics, an approach to study the properties of thermodynamic systems in terms of differential geometric concepts. It is based, on the one hand, upon the well-known contact structure of the thermodynamic phase space and, on the other hand, on the metric structure of the space of thermodynamic equilibrium states. In order to make these two structures compatible we introduce a Legendre invariant set of metrics in the phase space, and demand that their pullback generates metrics on the space of equilibrium states. We show that Weinhold's metric, which was introduced {\it ad hoc}, is not contained within this invariant set. We propose alternative metrics which allow us to redefine the concept of thermodynamic length in an invariant manner and to study phase transitions in terms of curvature singularities.Comment: Revised version, to be published in Jour. Math. Phy
    corecore